The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant
نویسندگان
چکیده
The recessive mouse mutation kreisler affects hindbrain segmentation and inner ear development in homozygous mice. The mouse gene affected by the mutation was found to encode a basic domain leucine-zipper (bZIP)-type transcription factor of the Maf-family named kr (Cordes, S.P. and Barsh, G.S. (1994) Cell 79, 1025-1034). The avian bZIP transcription factor mafB, which shows high homology to kr, has been identified as an interaction partner of c-Ets 1 (Sieweke, M.H., Tekotte, M.H., Frampton, J. and Graf, T. (1996) Cell 85, 49-60). Here we demonstrate by Southern blot analysis that mafB is the avian homologue of kr, and present a detailed pattern of its expression during avian and murine embryonic development. Consistent with the kreisler phenotype, mafB is expressed in avians in the tissues which are affected by the mouse mutation: rhombomeres 5 and 6 (r5 and r6) and the neural crest derived from these rhombomeres. However, our analysis reveals a variety of additional expression sites: mafB/kr expression persists in vestibular and acoustic nuclei and is also observed in differentiating neurons of the spinal cord and brain stem. Restricted expression sites are found in the mesonephros, the perichondrium, and in the hemopoietic system. Since these expression sites are conserved between mouse and chicken we reexamined homozygous kreisler mice for unrevealed phenotypes in the hemopoietic system. However, peritoneal macrophages from homozygous kreisler mice were found to be functionally normal and still expressed mafB/kr. Other adult tissues examined from homozygous kreisler mice had also not lost mafB/kr expression. Our results thus indicate that the kreisler mutation involves a tissue specific gene inactivation and suggest additional roles for mafB/kr in later developmental and differentiation processes that are not revealed by the mutation.
منابع مشابه
Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملDefined concentrations of a posteriorizing signal are critical for MafB/Kreisler segmental expression in the hindbrain.
It has been shown by using the quail/chick chimera system that Hox gene expression in the hindbrain is influenced by positional signals arising from the environment. In order to decipher the pathway that leads to Hox gene induction, we have investigated whether a Hox gene regulator, the leucine zipper transcription factor MafB/Kr, is itself transcriptionally regulated by the environmental signa...
متن کاملPrimary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملDifferent respiratory control systems are affected in homozygous and heterozygous kreisler mutant mice.
During embryonic development, restricted expression of the regulatory genes Krox20 and kreisler are involved in segmentation and antero-posterior patterning of the hindbrain neural tube. The analysis of transgenic mice in which specific rhombomeres (r) are eliminated points to an important role of segmentation in the generation of neuronal networks controlling vital rhythmic behaviours such as ...
متن کاملChanges in vascular reactivity of the coronary artery and thoracic aorta in the delta sarcoglycan null mutant mice
Introduction: Mutations in the delta sarcoglycan gene (d-SG) cause limb-girdle muscular dystrophy type 2F with structural and functional alterations in cardiac, smooth and skeletal muscle. The objective of the present study was to improve information about changes in vascular reactivity of the thoracic aorta and the coronary artery in the perfused heart of the d-SG-null mutant mouse model. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 65 شماره
صفحات -
تاریخ انتشار 1997